Bounded t-structures and finitistic dimension for triangulated categories

Kabeer Manali Rahul

with R. Biswas, H. Chen, C. J. Parker, and J. Zheng

May 2024

May 2024

1/19

Kabeer MR (Australian National University) Bounded t-structures and finitistic dimension

Rudradip Biswas, Hongxing Chen, Kabeer Manali Rahul, Chris J. Parker, and Junhua Zheng. Bounded t-structures, finitistic dimensions, and singularity categories of triangulated categories. arXiv e-prints. 2024. arXiv: 2401.00130

Finitistic dimension

Definition 1.

Let R be a noetherian ring. Then, the *small finitistic dimension* is defined to be,

findim $(R) \coloneqq \sup\{\text{proj.dim.}(M) \mid M \in \text{mod}(R) \text{ and } \text{proj.dim.}(M) < \infty\}$

Definition 1.

Let *R* be a ring. Then the *small finitistic dimension* of *R* is the supremum over $n \ge 0$ such that there exists a minimal projective resolution of lenth *n* of an *R*-module *M*, consisting of finitely generated projectives.

Definition 1.

Let *R* be a ring. Then the *small finitistic dimension* of *R* is the supremum over $n \ge 0$ such that there exists a minimal projective resolution of lenth *n* of an *R*-module *M*, consisting of finitely generated projectives.

Main Definition.

Let T be a triangulated category and G any object in T. Then,

findim(T, G) := inf
$$\left\{ n \mid \left\{ \Sigma^{i}G : i \ge 1 \right\}^{\perp} \subseteq \Sigma^{n} \langle G \rangle^{[0,\infty)} \right\}$$

where

 $\left\{ \Sigma^{i}G : i \geq 1 \right\}^{\perp} = G^{\perp_{<0}} := \left\{ F \in \mathsf{T} \mid \operatorname{Hom}_{\mathsf{T}}(\Sigma^{i}G, F) = 0 \text{ for all } i \geq 1 \right\}$ and $\langle G \rangle^{[0,\infty)}$ is the smallest strictly full subcategory of T containing G which is closed under desuspensions, direct summands, and extensions.

Main Definition.

Let T be a triangulated category and G any object in T. Then,

$$\mathsf{findim}(\mathsf{T}, \mathsf{G}) \coloneqq \inf \left\{ n \mid \left\{ \Sigma^{i} \mathsf{G} : i \ge 1 \right\}^{\perp} \subseteq \Sigma^{n} \langle \mathsf{G} \rangle^{[0,\infty)} \right\}$$

where

 $\left\{\Sigma^{i}G: i \ge 1\right\}^{\perp} = G^{\perp_{<0}} := \left\{F \in \mathsf{T} \mid \operatorname{Hom}_{\mathsf{T}}(\Sigma^{i}G, F) = 0 \text{ for all } i \ge 1\right\}$ and $\langle G \rangle^{[0,\infty)}$ is the smallest strictly full subcategory of T containing G which is closed under desuspensions, direct summands, and extensions.

Example 2.

For a unital ring R, findim($K^{b}(\text{proj}-R), R$) = findim(R).

4/19

Example 2.

For a unital ring R, findim($K^{b}(\text{proj}-R)$, R) = findim(R).

Henning Krause. The finitistic dimension of a triangulated category. arXiv e-prints. 2024. arXiv: 2307.12671v2

Remark 2.

The finiteness of these two definitions is not equivalent !

A B < A B </p>

- 4 🗗 ▶

Remark 2.

The finiteness of these two definitions is not equivalent !

Example 3.

Let Λ be an Artin algebra. Then,

```
findim(D^{b}(mod - \Lambda), S) < \infty and findim(D_{sg}(\Lambda), S) < \infty
```

where S is the direct sum of all simple modules.

4/19

Remark 2.

The finiteness of these two definitions is not equivalent !

Example 3.

Let Λ be an Artin algebra. Then,

 $findim(D^b(mod-\Lambda), S) < \infty$ and $findim(D_{sg}(\Lambda), S) < \infty$

where S is the direct sum of all simple modules.

Remark 4.

The two definitions differ for the case $D^b(\text{mod}-\Lambda)$ for an Artin algebra Λ with infinite global dimension.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Remark 2.

The finiteness of these two definitions is not equivalent !

Example 3.

Let Λ be an Artin algebra. Then,

 $findim(D^b(mod-\Lambda), S) < \infty$ and $findim(D_{sg}(\Lambda), S) < \infty$

where S is the direct sum of all simple modules.

Remark 4.

The two definitions differ for the case $D^b(\text{mod}-\Lambda)$ for an Artin algebra Λ with infinite global dimension.

Theorem 5.

If T has a strong generator G, then, findim $(T, G) < \infty$.

More examples

Theorem 6.

Let X be a qcqs scheme which is covered by affine schemes $\mathbf{Spec}(R_i)$ such that findim $(R_i) < \infty$. Then, findim $(\mathbf{D}^{\mathsf{perf}}(X), G) < \infty$ for any classical generator G of $\mathbf{D}^{\mathsf{perf}}(X)$. In particular, for a noetherian finite dimensional scheme X, findim $(\mathbf{D}^{\mathsf{perf}}(X), G) < \infty$.

Theorem 6.

Let X be a qcqs scheme which is covered by affine schemes $\mathbf{Spec}(R_i)$ such that $\mathbf{findim}(R_i) < \infty$. Then, $\mathbf{findim}(\mathbf{D}_Z^{\mathsf{perf}}(X), G) < \infty$ for any classical generator G of $\mathbf{D}_Z^{\mathsf{perf}}(X)$ and any closed subset Z with quasicompact complement. In particular, for a noetherian finite dimensional scheme X, $\mathbf{findim}(\mathbf{D}_Z^{\mathsf{perf}}(X), G) < \infty$ for any closed subset Z.

5/19

Theorem 6.

Let X be a qcqs scheme which is covered by affine schemes $\mathbf{Spec}(R_i)$ such that $\mathbf{findim}(R_i) < \infty$. Then, $\mathbf{findim}(\mathbf{D}_Z^{\mathsf{perf}}(X), G) < \infty$ for any classical generator G of $\mathbf{D}_Z^{\mathsf{perf}}(X)$ and any closed subset Z with quasicompact complement. In particular, for a noetherian finite dimensional scheme X, $\mathbf{findim}(\mathbf{D}_Z^{\mathsf{perf}}(X), G) < \infty$ for any closed subset Z.

Theorem 7.

If *R* is a noetherian, non-positive DG-ring with finite finitistic dimension, then, findim(Thick(*R*), *R*) < ∞ .

Isaac Bird, Liran Shaul, Prashanth Sridhar, and Jordan Williamson. *Finitistic dimensions over commutative DG-rings*. arXiv e-prints. 2022. arXiv: 2204.06865v2

< 回 > < 三 > < 三 > -

Bounded t-structures

Definition 8.

Let T be a triangulated category. A t-structure $(T^{\leqslant 0},T^{\geqslant 0})$ is bounded above if

$$\mathsf{T} = \bigcup_{i \in \mathbb{Z}} \mathsf{\Sigma}^i \mathsf{T}^{\leqslant 0}$$

Bounded t-structures

Definition 8.

Let T be a triangulated category. A t-structure $(T^{\leqslant 0},T^{\geqslant 0})$ is bounded $% T^{\ast 0}$ if

$$\bigcup_{i\in\mathbb{Z}}\Sigma^{i}\mathsf{T}^{\geqslant 0}=\mathsf{T}=\bigcup_{i\in\mathbb{Z}}\Sigma^{i}\mathsf{T}^{\leqslant 0}$$

Bounded t-structures

Definition 8.

Let T be a triangulated category. A t-structure $(T^{\leqslant 0},T^{\geqslant 0})$ is bounded $% T^{\ast 0}$ if

$$\bigcup_{i\in\mathbb{Z}}\Sigma^{i}\mathsf{T}^{\geqslant 0}=\mathsf{T}=\bigcup_{i\in\mathbb{Z}}\Sigma^{i}\mathsf{T}^{\leqslant 0}$$

Remark 9.

Let T be a triangulated category with a classical generator G. If $H \in T$ such that findim $(T, H) < \infty$, then findim $(T, G) < \infty$. In such a case we say findim $(T) < \infty$.

Lemma 10.

Let T be a triangulated category with an object G such that findim(T, G) $< \infty$. If T has a bounded t-structure, then G is a classical generator for T.

Meta Theorem.

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then the "singularity category of T" vanishes, that is T is "regular".

Main Theorem A.

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_{G}(T)$

・ 日本 ・ 日本 ・ 日本 ・

Meta Theorem.

Let T be a triangulated category with an object G such that **findim**(T^{op}, G) < ∞ . If T has a bounded t-structure, then the "singularity category of T" vanishes, that is T is "regular".

Main Theorem A.

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_G(T)$.

7/19

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition 11 (Neeman).

A good metric on a triangulated category T is a sequence $\{N_i\}_{i \in \mathbb{N}}$ of full subcategories of T containing 0 such that for all $i \in \mathbb{N}$,

- $2 \Sigma^{-1} \mathcal{N}_{i+1} \cup \mathcal{N}_{i+1} \cup \Sigma \mathcal{N}_{i+1} \subseteq \mathcal{N}_i$

Remark 12.

Let T be a triangulated category T with an object $G \in T$. Then, we can define the good metric $\{\Sigma^n \langle G \rangle^{(-\infty,0]}\}_{n \ge 0}$ which we call the *G*-good metric. Here $\langle G \rangle^{(-\infty,0]}$ is the stricty full subcategory generated by *G* which is closed under suspensions, direct summands, and extensions.

Remark 13 (Neeman).

Given a triangulated category T with a good metric, we can define the completion, $\mathfrak{S}(\mathsf{T})$ inside $\mathsf{Hom}(\mathsf{T}^{\mathsf{op}},\mathsf{Ab}).$ It is a triangulated category.

Examples of $\mathfrak{S}(\mathsf{T})$

Remark 14.

- We denote the completion of a triangulated category T with respect to the *G*-good metric by $\mathfrak{S}_G(T)$.
- For a triangulated category with a classical generator G, we will always consider the completion with respect to the G-good metric, unless stated otherwise.

Example 15 (Neeman).

Let R be a noetherian ring. Then,

$$\mathfrak{S}(\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R)) = \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$$

2 Let X be a noetherian scheme then,

$$\mathfrak{S}(\mathbf{D}^{\mathsf{perf}}(X)) = \mathbf{D^b_{coh}}(X)$$

Examples of $\mathfrak{S}(\mathsf{T})$

Remark 14.

- We denote the completion of a triangulated category T with respect to the *G*-good metric by $\mathfrak{S}_G(T)$.
- For a triangulated category with a classical generator G, we will always consider the completion with respect to the G-good metric, unless stated otherwise.

Example 15 (Neeman).

Let R be a noetherian ring. Then,

$$\mathfrak{S}(\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R)) = \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$$

2 Let X be a noetherian scheme with a closed subset Z, then,

$$\mathfrak{S}(\mathbf{D}^{\mathsf{perf}}_{\mathsf{Z}}(X)) = \mathbf{D}^{\mathsf{b}}_{\mathsf{coh},\mathsf{Z}}(X)$$

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_{G}(T)$.

Corollary 16.

For an Artin algebra Λ such that findim $(\Lambda^{op}) < \infty$, $K^{b}(\text{proj}-\Lambda)$ has a bounded t-structure if and only if Λ has finite global dimension.

Corollary 17.

Let R be a ring such that findim $(R^{op}) < \infty$. Then,

If R is noetherian (or even coherent) then there exists a bounded t-structure on K^b(proj -R) if and only if D_{sg}(R) = 0.

If there exists a bounded t-structure on K^b(proj -R) then K^b(proj -R) = K^{-,b}(proj -R).

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_{G}(T)$.

Corollary 16.

For an Artin algebra Λ such that findim $(\Lambda^{op}) < \infty$, $K^{b}(\text{proj}-\Lambda)$ has a bounded t-structure if and only if Λ has finite global dimension.

Corollary 17.

Let R be a ring such that findim $(R^{op}) < \infty$. Then,

- If R is noetherian (or even coherent) then there exists a bounded t-structure on K^b(proj -R) if and only if D_{sg}(R) = 0.
- If there exists a bounded t-structure on K^b(proj -R) then K^b(proj -R) = K^{¬b}(proj -R).

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_{G}(T)$.

Corollary 16.

For an Artin algebra Λ such that findim $(\Lambda^{op}) < \infty$, $K^{b}(\text{proj}-\Lambda)$ has a bounded t-structure if and only if Λ has finite global dimension.

Corollary 17.

Let R be a ring such that $findim(R^{op}) < \infty$. Then,

If R is noetherian (or even coherent) then there exists a bounded t-structure on K^b(proj -R) if and only if D_{sg}(R) = 0.

If there exists a bounded t-structure on K^b(proj -R) then K^b(proj -R) = K^{-,b}(proj -R).

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . If T has a bounded t-structure, then T = $\mathfrak{S}_{G}(T)$.

Corollary 16.

For an Artin algebra Λ such that findim $(\Lambda^{op}) < \infty$, $K^{b}(\text{proj}-\Lambda)$ has a bounded t-structure if and only if Λ has finite global dimension.

Corollary 17.

Let R be a ring such that findim $(R^{op}) < \infty$. Then,

- If R is noetherian (or even coherent) then there exists a bounded t-structure on K^b(proj -R) if and only if D_{sg}(R) = 0.
- If there exists a bounded t-structure on K^b(proj -R) then K^b(proj -R) = K^{-,b}(proj -R).

Lemma 18.

Let R be a non-positive noetherian DG-ring. Then,

 $\mathfrak{S}(\mathsf{Thick}(R)) = \mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(R)$

where

$$\mathbf{D^b_f}(R) = \left\{ F \mid \mathsf{H^i}(F) = 0 \text{ for all } |i| >> 0 \text{ and } \mathsf{H^i}(F) \in \mathbf{mod}(\mathsf{H^0}(R)) \forall i \in \mathbb{Z} \right\}$$

Corollary 19.

Let *R* be a non-positive noetherian *DG*-ring with findim(R^{op}) < ∞ . If **Thick**(*R*) has a bounded t-structure then **Thick**(*R*) = **D**^b_f(*R*).

Conjecture 20 (Antieau, Gepner, Heller).

Let X be a noetherian finite-dimensional scheme. Then, $\mathbf{D}^{\text{perf}}(X)$ has a bounded t-structure if and only if X is regular, that is $\mathbf{D}_{\text{sg}}(X) = 0$.

Benjamin Antieau, David Gepner, and Jeremiah Heller. "*K*-theoretic obstructions to bounded *t*-structures". In: *Invent. Math.* 216.1 (2019), pp. 241–300

Theorem 20 (Neeman).

Let X be a noetherian finite-dimensional scheme with a closed subset Z. Then, $\mathbf{D}_{Z}^{\text{perf}}(X)$ has a bounded t-structure if and only if $Z \subseteq \text{reg}(X)$, that is $\mathbf{D}_{Z}^{\text{perf}}(X) = \mathbf{D}_{\text{coh},Z}^{\mathbf{b}}(X)$.

Amnon Neeman. Bounded t-structures on the category of perfect complexes. Acta Math (to appear). arxiv:2202.08861v3

Theorem 20 (Neeman).

Let X be a noetherian finite-dimensional scheme with a closed subset Z. Then, $\mathbf{D}_{Z}^{\text{perf}}(X)$ has a bounded t-structure if and only if $Z \subseteq \text{reg}(X)$, that is $\mathbf{D}_{Z}^{\text{perf}}(X) = \mathbf{D}_{\text{coh},Z}^{\mathbf{b}}(X)$.

Amnon Neeman. Bounded t-structures on the category of perfect complexes. Acta Math (to appear). arxiv:2202.08861v3 Harry Smith. "Bounded t-structures on the category of perfect complexes over a Noetherian ring of finite Krull dimension". In: *Adv. Math* 399 (2022), 21pp

Theorem 21 (Smith).

There exist no non-trivial t-structures on $\mathbf{K}^{\mathbf{b}}(\text{proj}-R) = \mathbf{D}^{\text{perf}}(\mathbf{Spec}(R))$ for a singular noetherian finite dimensional ring R.

Uses the classification of compactly generated t-structures on D(R).

Theorem 22 (Biswas, Parker, MR).

There are no non-trivial tensor-compatible t-structures on $\mathbf{D}^{\text{perf}}(X)$ for a singular finite-dimensional noetherian scheme X.

Theorem 21 (Smith).

There exist no non-trivial t-structures on $\mathbf{K}^{\mathbf{b}}(\text{proj}-R) = \mathbf{D}^{\text{perf}}(\mathbf{Spec}(R))$ for a singular noetherian finite dimensional ring R.

Uses the classification of compactly generated t-structures on D(R). Leovigildo Alonso Tarrío, Ana Jeremías López, and Manuel Saorín. "Compactly generated t-structures on the derived category of a Noetherian ring". In: Journal of Algebra 324 (2010), pp. 313–346

Theorem 22 (Biswas, Parker, MR).

There are no non-trivial tensor-compatible t-structures on $\mathbf{D}^{\text{perf}}(X)$ for a singular finite-dimensional noetherian scheme X.

・日・ ・ ヨ・ ・ ヨ・

Theorem 21 (Smith).

There exist no non-trivial t-structures on $\mathbf{K}^{\mathbf{b}}(\text{proj}-R) = \mathbf{D}^{\text{perf}}(\mathbf{Spec}(R))$ for a singular noetherian finite dimensional ring R.

Uses the classification of compactly generated t-structures on D(R).

Theorem 22 (Biswas, Parker, MR).

There are no non-trivial tensor-compatible t-structures on $\mathbf{D}^{\text{perf}}(X)$ for a singular finite-dimensional noetherian scheme X.

Let T be a triangulated category with a good metric $\{\mathcal{N}_i\}_{i\in\mathbb{N}}$. A t-structure $(\mathsf{T}^{\leqslant 0},\mathsf{T}^{\geqslant 0})$ is *extendable* if there exists i > 0 such that $\mathcal{N}_i \subseteq \mathsf{T}^{\leqslant 0}$. In particular, any bounded t-structure is extendable for the metric given by $\{\Sigma^i \langle G \rangle^{(-\infty,0]}\}_{i\in\mathbb{N}}$ for any object $G \in \mathsf{T}$.

14/19

Let T be a triangulated category with a good metric $\{\mathcal{N}_i\}_{i\in\mathbb{N}}$. A t-structure $(\mathsf{T}^{\leq 0},\mathsf{T}^{\geq 0})$ is *extendable* if there exists i > 0 such that $\mathcal{N}_i \subseteq \mathsf{T}^{\leq 0}$. In particular, any bounded t-structure is extendable for the metric given by $\{\Sigma^i \langle G \rangle^{(-\infty,0]}\}_{i\in\mathbb{N}}$ for any object $G \in \mathsf{T}$.

Definition 24.

Let T be a triangulated category with a metric $\{N_i\}$. Then, for any full subcategory A of T, we define, $\mathfrak{S}(A) := \mathfrak{L}(A) \cap \mathfrak{C}(T)$, where $\mathfrak{L}(A)$ is obtained by taking the colimits of all Cauchy sequences in A under the Yoneda embeddding.

14/19

|田 | | 田 | | 田 |

Let T be a triangulated category with a metric $\{N_i\}$. Then, for any full subcategory A of T, we define, $\mathfrak{S}(A) := \mathfrak{L}(A) \cap \mathfrak{C}(T)$, where $\mathfrak{L}(A)$ is obtained by taking the colimits of all Cauchy sequences in A under the Yoneda embeddding.

Theorem 24.

Let $(T^{\leqslant 0}, T^{\geqslant 0})$ be an extendable t-structute on a triangulated category T with a metric $\{N_i\}$. Then,

- (𝔅(T^{≤0}), 𝔅(T^{≥0})) is a t-structure on 𝔅(T). Further, the hearts of the two t-structure are equivalent via the Yoneda embedding.
- $\textbf{O} \ \text{ If } (T^{\leqslant 0}, T^{\geqslant 0}) \text{ is bounded above, so is } \big(\mathfrak{S}(T^{\leqslant 0}), \mathfrak{S}(T^{\geqslant 0})\big).$
- Let findim(T^{op} , G) < ∞. Then, if ($T^{\leq 0}$, $T^{\geq 0}$) is bounded, so is $(\mathfrak{S}_G(T^{\leq 0}), \mathfrak{S}_G(T^{\geq 0}))$.

Let T be a triangulated category with a good metric $\{\mathcal{N}_i\}_{i\in\mathbb{N}}$. A t-structure $(\mathsf{T}^{\leqslant 0},\mathsf{T}^{\geqslant 0})$ is *extendable* if there exists i > 0 such that $\mathcal{N}_i \subseteq \mathsf{T}^{\leqslant 0}$. In particular, any bounded t-structure is extendable for the metric given by $\{\Sigma^i \langle G \rangle^{(-\infty,0]}\}_{i\in\mathbb{N}}$ for any object $G \in \mathsf{T}$.

Theorem 24.

Let $(T^{\leq 0}, T^{\geq 0})$ be an extendable t-structute on a triangulated category T with a metric $\{N_i\}$. Then,

- (𝔅(T^{≤0}), 𝔅(T^{≥0})) is a t-structure on 𝔅(T). Further, the hearts of the two t-structure are equivalent via the Yoneda embedding.
- $\textbf{O} \quad \textit{If} \ (T^{\leqslant 0}, T^{\geqslant 0}) \ \textit{is bounded above, so is} \ \big(\mathfrak{S}(T^{\leqslant 0}), \mathfrak{S}(T^{\geqslant 0})\big).$
- Let findim(T^{op}, G) < ∞. Then, if $(T^{\leq 0}, T^{\geq 0})$ is bounded, so is $(\mathfrak{S}_{G}(T^{\leq 0}), \mathfrak{S}_{G}(T^{\geq 0}))$.

Let T be a triangulated category. Two t-structures $(\mathsf{T}_1^{\leqslant 0}, \mathsf{T}_1^{\geqslant 0})$ and $(\mathsf{T}_2^{\leqslant 0}, \mathsf{T}_2^{\geqslant 0})$ are *equivalent* if $\mathsf{T}_2^{\leqslant -i} \subseteq \mathsf{T}_1^{\leqslant 0} \subseteq \mathsf{T}_2^{\leqslant i}$ for some $i \ge 0$.

Theorem 26 (Neeman).

Let X be a noetherian finite-dimensional scheme. Then, all bounded t-structures on $\mathbf{D^b_{coh,Z}}(X)$ are equivalent if any of the following holds,

- $I Z \subseteq \operatorname{reg}(X)$
- 2 X has a dualizing complex.
- I = X, and X is separated and quasiexcellent.

15/19

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Let T be a triangulated category. Two t-structures $(\mathsf{T}_1^{\leqslant 0}, \mathsf{T}_1^{\geqslant 0})$ and $(\mathsf{T}_2^{\leqslant 0}, \mathsf{T}_2^{\geqslant 0})$ are *equivalent* if $\mathsf{T}_2^{\leqslant -i} \subseteq \mathsf{T}_1^{\leqslant 0} \subseteq \mathsf{T}_2^{\leqslant i}$ for some $i \ge 0$.

Theorem 26 (Neeman).

Let X be a noetherian finite-dimensional scheme. Then, all bounded t-structures on $\mathbf{D^b_{coh,Z}}(X)$ are equivalent if any of the following holds,

- $I \subseteq \operatorname{reg}(X)$
- 2 X has a dualizing complex.
- **(3)** Z = X, and X is separated and quasiexcellent.

15/19

・ 何 ト ・ ヨ ト ・ ヨ ト …

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . Then, all bounded t-structures on any category \mathcal{X} such that T $\subseteq \mathcal{X} \subseteq \mathfrak{S}_{G}(T)$ are equivalent.

Corollary 27.

Let X be a noetherian finite-dimensional scheme with a closed subset Z. Then, all bounded t-structures on $D^{b}_{coh,Z}(X)$ are equivalent.

Corollary 28.

Let R be noetherian (or coherent) ring such that findim $(R^{op}) < \infty$. Then all bounded t-structures on any trianfulated category \mathfrak{X} such that $\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R) \subseteq \mathfrak{X} \subseteq \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$ are equivalent.

16/19

イロト イヨト イヨト

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . Then, all bounded t-structures on any category \mathcal{X} such that T $\subseteq \mathcal{X} \subseteq \mathfrak{S}_{G}(T)$ are equivalent.

Corollary 27.

Let X be a noetherian finite-dimensional scheme with a closed subset Z. Then, all bounded t-structures on $\mathbf{D^b_{coh,Z}}(X)$ are equivalent.

Corollary 28.

Let R be noetherian (or coherent) ring such that findim $(R^{op}) < \infty$. Then all bounded t-structures on any trianfulated category \mathfrak{X} such that $\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R) \subseteq \mathfrak{X} \subseteq \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$ are equivalent.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let T be a triangulated category with an object G such that findim(T^{op}, G) < ∞ . Then, all bounded t-structures on any category \mathfrak{X} such that T $\subseteq \mathfrak{X} \subseteq \mathfrak{S}_{G}(\mathsf{T})$ are equivalent.

Corollary 27.

Let X be a noetherian finite-dimensional scheme with a closed subset Z. Then, all bounded t-structures on $\mathbf{D^b_{coh,Z}}(X)$ are equivalent.

Corollary 28.

Let R be noetherian (or coherent) ring such that findim $(R^{op}) < \infty$. Then all bounded t-structures on any trianfulated category \mathfrak{X} such that $\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R) \subseteq \mathfrak{X} \subseteq \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$ are equivalent.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Example 29.

Let $R = k[X_1, X_2, \cdots]$ for a field k. Recall that findim $(R) = \infty$. Further,

• $\mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R) = \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$

2 There are two non-equivalent bounded t-structures on $D^{b}(mod - R)$.

Question 30

Let R be a coherent ring. Is it true that if $K^{b}(\text{proj}-R)$ has a bounded t-structure then $D_{sg}(R) = 0$?

Question 31.

In what generality is it true that if a classicaly generated triangulated category T has a bounded t-structure, then $T=\mathfrak{S}(T)$?

イロト イヨト イヨト イヨト

Example 29.

Let $R = k[X_1, X_2, \cdots]$ for a field k. Recall that findim $(R) = \infty$. Further,

2 There are two non-equivalent bounded t-structures on $D^{b}(mod - R)$.

Question 30.

Let *R* be a coherent ring. Is it true that if $K^{b}(\text{proj-}R)$ has a bounded t-structure then $D_{sg}(R) = 0$?

Question 31.

In what generality is it true that if a classicaly generated triangulated category T has a bounded t-structure, then $T=\mathfrak{S}(T)$?

イロト イヨト イヨト イヨト

May 2024

17/19

Example 29.

Let $R = k[X_1, X_2, \cdots]$ for a field k. Recall that findim $(R) = \infty$. Further,

$$Q \quad \mathbf{K}^{\mathbf{b}}(\operatorname{proj} - R) = \mathbf{D}^{\mathbf{b}}(\operatorname{mod} - R)$$

2 There are two non-equivalent bounded t-structures on $D^{b}(mod - R)$.

Question 30.

Let *R* be a coherent ring. Is it true that if $K^{b}(\text{proj}-R)$ has a bounded t-structure then $\mathbf{D}_{sg}(R) = 0$?

Question 31.

In what generality is it true that if a classicaly generated triangulated category T has a bounded t-structure, then $T=\mathfrak{S}(T)$?

イロト イヨト イヨト イヨト

References I

- Alonso Tarrío, Leovigildo, Ana Jeremías López, and Manuel Saorín. "Compactly generated t-structures on the derived category of a Noetherian ring". In: *Journal of Algebra* 324 (2010), pp. 313–346.
- Antieau, Benjamin, David Gepner, and Jeremiah Heller. "K-theoretic obstructions to bounded t-structures". In: Invent. Math. 216.1 (2019), pp. 241–300.
- Bird, Isaac, Liran Shaul, Prashanth Sridhar, and Jordan Williamson. Finitistic dimensions over commutative DG-rings. arXiv e-prints. 2022. arXiv: 2204.06865v2.
- Biswas, Rudradip, Hongxing Chen, Kabeer Manali Rahul, Chris J. Parker, and Junhua Zheng. Bounded t-structures, finitistic dimensions, and singularity categories of triangulated categories. arXiv e-prints. 2024. arXiv: 2401.00130.
- Krause, Henning. The finitistic dimension of a triangulated category. arXiv e-prints. 2024. arXiv: 2307.12671v2.

Neeman, Amnon. Bounded t-structures on the category of perfect complexes. Acta Math (to appear). arxiv:2202.08861v3.
 Smith, Harry. "Bounded t-structures on the category of perfect complexes over a Noetherian ring of finite Krull dimension". In: Adv. Math 399 (2022), 21pp.